

M4 INSTRUCTION MANUAL

1. TOOL SPARE PARTS

ITEM	CODE	REFERENCE	DESCRIPTION	ITEMS INCLUDED
M4 20.08 / M4 20.10				
P.01	01990601	E 20.6 HM	Axis HM ø6x20	P.01
C.02	01988500	EA M4-6	Socket set screw DIN 913 M4x6	C.02
*P.02		MM4 20.08.16	Shank M4 20.08.16	
		MM4 20.08.20	Shank M4 20.08.20	
	-	MM4 20.08.25	Shank M4 20.08.25	-
		MM4 20.10.20	Shank M4 20.10.20	
		MM4 20.10.25	Shank M4 20.10.25	
C.01	01900075	EA M8-20	Stud screw DIN M8x20	C.01
M4 25.08 /	M4 25.10			
P.01	01986001	E 20.8 HM	Axis HM ø8x20	P.01
C.02	01988500	EA M4-6	Socket set screw DIN 913 M4x6	C.02
		MM4 25.08.20	Shank M4 25.08.20	
*D 00		MM4 25.08.25	Shank M4 25.08.25	
*P.02		MM4 25.10.20	Shank M4 25.10.20	-
		MM4 25.10.25	Shank M4 25.10.25	
C.01	01900075	EA M8-20	Stud screw DIN M8x20	C.01
M4 25.12				
P.01	01992501	E 25.8 HM	Axis HM ø8x25	P.01
C.02	01988550	EA M4-6	Socket set screw DIN 913 M4x6	C.02
*P.02		MM4 25.12.20	Shank M4 25.12.20	
	-	MM4 25.12.25	Shank M4 25.12.25	
C.01	01981400	EA M8-25	Stud screw DIN M8x25	C.01

*This item is not sold individually

Table 1

2. FEASIBLE PATTERNS

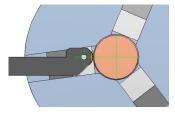
The M4 form knurling tool is conceived for knurling on pieces:

- If the knurling wheel used is Ø 20 mm: for diameters between 8 and 200 mm.
- If the knurling wheel used is \emptyset 25 mm: for diameters between 8 and 300 mm.

The obtained pattern depends on the knurls used as shown below.

KNURLING PROFILE			KNURLING	FEED			
		DESCRIPTION	WHEEL	AXIAL FEED	RADIAL FEED		
	RAA	Right	AA knurl	\checkmark	\checkmark		
	RBL 30°	30° Left helical	BR30º knurl	\checkmark	\checkmark		
	RBL 45°	45° Left helical	BR45° knurl	\checkmark	\checkmark		
	RBR 30°	30° Right helical	BL30° knurl	\checkmark	\checkmark		
	RBR 45°	45° Right helical	BL45° knurl	\checkmark	\checkmark		
	RGE 30°	30º diamond pattern male	GV30° knurl	×	\checkmark		
	RGE 45°	45º diamond pattern male	GV45° knurl	×	\checkmark		
	RGV 30°	30º diamond pattern female	GE30° knurl	×	\checkmark		
	RGV 45°	45º diamond pattern female	GE45° knurl	×	\checkmark		
	RKE	90º diamond pattern male	KV knurl	×	\checkmark		
	RKV	90º diamond pattern male	KE knurl 🗴		\checkmark		

Table 2


3. CLAMPING AND SETTING THE TOOL INTO THE MACHINE

First, we need to make sure that the knurl rotates freely around the pin. Spread graphite grease if necessary.

While the chuck rotates very slowly, approach the tool to the workpiece until the knurl makes contact with the workpiece.

Approach the knurling wheel to the workpiece following the 'F' direction up until the teeth plunge a little into it. Check out the resulted print. The printed width (h) must be equal to the width of the teeth on the knurl. If the width isn't correct, change the clearance angle.

The tool and the workpiece need to be aligned as shown on the drawing 2.

Drawing 2

4. KNURLING ON STEPPED WORKPIECES

When knurling stepped workpieces, it is not possible to knurl up to a shoulder. Using this tool, no knurling should be performed closer to 5,5 mm from the shoulder itself.

5. BEGINNING TO KNURL

While the chuck is rotating at the speed recomended at point 8, feed the

tool so that 1/3 of the width of the knurling wheel gets in contact with the workpiece.

Press the knurl against the workpiece. The value of the radial feed must be according to the conditions recommended on the table 4 (next page). After that, you will be able to feed longitudinally.

To calculate up to what diameter we must deepen with the knurl, we must take into account the height of the tooth (in the case of standard knurls is always equal to half the step) and the increase in diameter that suffers the material.

That information is available at www.integi.com and in our catalog

6. BEFORE AND DURING THE WORKING PROCESS

- Make sure that the knurl pin is firmly fastened
- Check that the knurling wheel runs free and lubricate it with graphite grease
- Make sure that the axis of the knurling wheel is aligned with the axis of the workpiece
- Always apply plenty of coolant, lubricant or cutting oil
- The working direction, longitudinal advance, will always be against the tool



Figura 3

7. TROUBLE SHOOTING

PROBLEM	CAUSE	SOLUTION			
Deuble kerveling	Too slow radial feed at the beginning of the knurling.	Increase radial feed at the beginning of the knurling*.			
Double knurling	Perimeter of the workpiece is not an exact multiple of the pitch.	Turn a diameter that makes the perimeter to be knurled an exact multiple of the pitch*.			
Knurling wheels easily breakable	Knurling too deep	Reduce the depth to values according to the pitch.			
Knurling wheels	Knurling too deep	Reduce the depth to values according to the pitch.			
wear out too fast	Working conditions are not adequate.	Check cutting speed and axial feed.			

* Sometimes, it is not possible to increase the radial feed or radial feed is just impossible because the workpiece is too small or its clamping is too weak.

Table 3

8. RECOMMENDED SETTINGS

			Cutting	RADIAL FEED (mm/rev)	TRAVERSE FEED (mm/rev)			
MATERIAL		WHEEL	speed		PITCH (mm)			
			(m/min)		0.3÷0.6	0.6÷1.2	1.2÷1.6	1.6÷2.0
	10÷50	20	25÷55	0.05÷0.10	0.20	0.15	0.13	0.10
		25	30÷60		0.25	0.20	0.15	0.13
Steel 600 N/mm ²	50÷100 100÷200	20÷25						
	200÷300	25						
	10÷50	20	20÷45	0.04÷0.08	0.15	0.10	0.08	0.06
		25	_		0.20	0.15	0.10	0.08
Steel 900 N/mm ²	50÷100	20÷25	25÷50					
	100÷200							
	200÷300	25						
	10÷50	20	20÷45	0.04÷0.08	0.15	0.10	0.08	0.06
		25	25÷50		0.20	0.15	0.10	0.08
Stainless steel	50÷100	20÷25	25÷50					
	100÷200							
	200÷300	25						
	10÷50	20	25÷45		0.20	0.15	0.13	0.10
		25	30÷50		0.25	0.20	0.15	0.13
Cast steel	50÷100	20÷25		0.05÷0.10				
	100÷200							
	200÷300	25	30÷50					
	10÷50	20	30÷50	0.05÷0.10	0.20	0.15	0.10	0.06
		25	35÷60					
Aluminium	50÷100	20÷25	35÷60		0.25	0.20	0.15	0.13
	100÷200							
	200÷300	25						
	10÷50	20	35÷55		0.25	0.20	0.18	0.15
_		25	40÷65		0.30	0.25	0.20	0.18
Brass	50÷100	20÷25		0.05÷0.10				
	100÷200							
	200÷300	25		Table 4				

Table 4

www.integi.com

INTEGI, S.A.

🗟 Autonomía Kalea, 5 - 48250 Zaldibar Bizkaia - Spain