
(1) FEASIbLE PATTERNS

KNURLING PROFILE	KNURL	FEED (Drawing.3)	
RAA	AA	\checkmark	\checkmark
RBL 30	BR 30°	\checkmark	\checkmark
RBL 45	BR 45	\checkmark	\checkmark
RBR 30	BL 30	\checkmark	\checkmark
RBR 45	BL 45	\checkmark	
RGE 30	GV 30	\checkmark	\checkmark
RGE 45	GV 45	\mathbf{x}	\checkmark
RGV 30	GE 30	\mathbf{x}	\checkmark
RGV 45	GE 45	\mathbf{x}	\checkmark
RKE	KV	\mathbf{x}	\checkmark
RKV	KE	\mathbf{x}	\checkmark

The M19 form knurling tool is conceived for knurling on pieces with diameters between 3 and 100 mm .
(2) CLAMPING AND SETTING THE TOOL IN THE MACHINE

Clamp the tool to the turret of the lathe. While the chuck rotates very slowly, approach the tool to the workpiece until the knurl makes contact with the workpiece.
Approach the knurling wheel to the workpiece following the ' F ' direction up until the teeth plunge a little into it. Check out the resulted print. The printed width (h) must be equal to the width of the teeth on the knurl. If the width isn't correct, change the clearance angle.

(3) KNURLING ON STEPPED WORKPIECES

When knurling stepped workpieces, it is not possible to knurl up to a shoulder.
Using this tool, no knurling should be performed closer to $0,5 \mathrm{~mm}$ from the shoulder itself.
(7) RECOMMENDED SETTINGS

MATERIAL	$\begin{gathered} \varnothing \\ \text { wORKPIECE } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \varnothing \\ \text { KNURL(mm) } \end{gathered}$	CUTTING SPEED (m/min)	RADIAL FEED (mm/rev)	TRAVERSE FEED (mm/rev) PITCH (mm)			
					0.3%.6	0.6\%1.2	1.2 $\div 1.6$	1.6 2.0
Steel $600 \mathrm{~N} / \mathrm{mm}^{2}$	<10	15	2050	$0.05 \div 0.10$	0.15	0.10	0.08	0.07
	10 $\div 50$		25*55		0.20	0.15	0.13	0.10
	50 $\div 100$		30 -60		0.25	0.20	0.15	0.13
Steel $900 \mathrm{~N} / \mathrm{mm}^{2}$	<10	15	15*40	$0.04 \div 0.08$	0.12	0.08	0.05	0.04
	1050		20 -45		0.15	0.10	0.08	0.06
	50 $\div 100$		25*50		0.20	0.15	0.10	0.08
Stainless steel	<10	15	15*40	$0.04 \div 0.08$	0.12	0.08	0.05	0.04
	10 $\div 50$		20*45		0.15	0.10	0.08	0.06
	50 $\div 100$		25*50		0.20	0.15	0.10	0.08
Cast steel	<10	15	20 -40	$0.05 \div 0.10$	0.15	0.10	0.08	0.07
	10 $\div 50$		25*45		0.20	0.15	0.13	0.10
	50 $\div 100$		30 -50		0.25	0.20	0.15	0.13
Aluminium	<10	15	25*45	$0.05 \div 0.10$	0.12	0.08	0.05	0.04
	10 $\div 50$		30 -50		0.20	0.15	0.10	0.06
	<10		$35 \div 60$		0.25	0.20	0.15	0.13
Brass	10 $\div 50$	15	30 -50	$0.05 \div 0.10$	0.20	0.15	0.12	0.10
	50 $\div 100$		35 -55		0.25	0.20	0.18	0.15
	<10		40 -65		0.30	0.25	0.20	0.18

* Sometimes, it is not possible to increase radial feed or it just cannot be radially fed in the workpiece is too weak.
(6) TROUBLE SHOOTING

PROBLEM	CAUSE	SOLUTION
Double knurling	Too slow radial feed at the beginning of the knurling	Increase radial feed at the beginning of the knurling*
	The perimeter of the workpiece is not an exact multiple of the pitch	Turn a diameter so that the perimeter to be knurled is an exact multiple of the pitch*
Knurling wheels easily breakable	Knurling too deep	Reduce the depth to values according to the pitch
Knurling wheels wear out too fast	Knurling too deep	Reduce the depth to values according to the pitch
	Working conditions are not adequate	Check cutting speed and traverse feeding speeds

