
(1) feasible patterns

KNURLING PROFILE	KNURL	FEED (Drawing.3)	
RAA	AA	\checkmark	\mathbf{R}
RBL 30	BR30	\checkmark	\checkmark
RBL 45	BR45	\checkmark	
RBR 30	BL30 $^{\circ}$	\checkmark	\checkmark
RBR 45	BL45	\checkmark	\checkmark
RGE 30	GV30 $^{\circ}$	\mathbf{x}	\checkmark
RGE 45	GV45 $^{\circ}$	\mathbf{x}	\checkmark
RGV 30	GE30	\mathbf{x}	\checkmark
RGV 45	GE45	\mathbf{x}	\checkmark
RKE	KV	\mathbf{x}	\checkmark
RKV	KE	\mathbf{x}	\checkmark

The M6 form knurling tool is conceived for knurling on pieces:

- If the knurl is $\varnothing 10$, diameters between 3 and 50 mm .
- If the knurl is $\varnothing 15$, diameters between 3 and 100 mm .
- If the knurl is Ø20, diameters between 5 and 200 mm .
(2) CLAMPING AND SETTING THE TOOL IN THE MACHINE

Clamp the tool to the turret of the lathe. While the chuck rotates very slowly, approach the tool to the workpiece until the knurl makes contact with the workpiece.
Approach the knurl to the workpiece following the 'F' direction up until the teeth plunge a little into it. Check out the resulted print. The printed width (h) must be equal to the width of the teeth on the knurl. If the width isn't correct, change the clearance angle.

Drawing. 2

(3) KNURLING ON STEPPED WORKPIECES

When knurling stepped workpieces, it is not possible to knurl up to a shoulder.
Using this tool, no knurling should be performed closer to 3 mm from the shoulder itself.

(4) BEGINNING TO KNURL

While the chuck is rotating at the speed recommended, feed the tool so that $1 / 3$ of the width of the knurl gets in contact with the workpiece.
Press the knurl against the workpiece. The value of the radial feed must be according to the conditions recommended on the table 1.
After that, you will be able to feed longitudinally.
To calculate up to what diameter we must deepen with the knurl, we must take into account the height of the tooth (in the case of standard knurls is always equal to half the step) and the increase in diameter that suffers the material.

(5) BEAR IN MIND BEFORE AND WHILE WORKING PROCESS

Make sure that the knurl pins are firmly fastened.
Make sure that the axis of the knurl is aligned with the axis of the workpiece.
Always work plenty of coolant, lubricant or cutting oil.
The working direction, longitudinal advance, will always be against the tool.

(6) TROUBLE SHOOTING

PROBLEM	CAUSE	SOLUTION
	Too slow radial feed at the beginning of the knurling	Increase radial feed at the beginning of the knurling*
	The perimeter of the workpiece is not an exact multiple of the pitch	Turn a diameter so that the perimeter to be knurled is an exact multiple of the pitch*
Knurling wheels easily breakable	Knurling too deep	Reduce the depth to values according to the pitch
Knurling wheels wear out too fast	Knurling too deep	Reduce the depth to values according to the pitch
	not adequate	

* Sometimes, it is not possible to increase radial feed, or it just cannot be radially fed in the workpiece is too weak.

(7) RECOMMENDED SETTINGS

MATERIAL	Ø WORKPIECE (mm)	Ø KNURL (mm)	CUTTING SPEED (m/min)	RADIAL FEED (mm/rev)	TRAVERSE FEDD (mm/rev)			
					PITCH (mm)			
					0.3*0.6	0.6 $\div 1.2$	1.2 1.6	1.6 2.0
Steel $600 \mathrm{~N} / \mathrm{mm}^{2}$	<10	10*15	20*50	0.05*0.10	0.15	0.10	0.08	0.07
	$10 \div 50$	20	25*55		0.20	0.15	0.13	0.10
	50 -100		30 60		0.25	0.20	0.15	0.13
	100*200							
Steel $900 \mathrm{~N} / \mathrm{mm}^{2}$	<10	10*15	$15 \div 40$$20 \div 45$	0.04*0.08	0.12	0.08	0.05	0.04
		20			0.15	0.10	0.08	0.06
	$50 \div 100$							
	100 $50 \div 200$		25*50		0.20	0.15	0.10	0.08
Stainless steel	<10	10*15	$15 \div 40$$20 \div 45$	0.04*0.08	0.12	0.08	0.05	0.04
		15			0.15	0.10	0.08	0.06
	10*50	20			0.15	0.10	0.08	0.06
	$\begin{gathered} 50 \div 100 \\ \hline 100 \div 200 \\ \hline \end{gathered}$		25*50		0.20	0.15	0.10	0.08
Cast steel	<10	10*15	$20 \div 40$$25 \div 45$	0.05*0.10	0.15	0.10	0.08	0.07
		20			0.20	0.15	0.13	0.10
	50 $\div 100$		30*50					
	100 -200				0.25	0.20	0.15	0.13
Aluminium	<10	10*15	$25 \div 45$$30 \div 50$	$0.05 \div 0.10$	0.12	0.08	0.05	0.04
		20			0.20	0.15	0.10	0.06
	$\frac{10 \div 50}{50 \div 100}$							
	100 $\div 200$		35*60		0.25	0.20	0.15	0.13
Brass	<10	10*15	$30 \div 50$$35 \div 55$	$0.05 \div 0.10$	0.20	0.15	0.12	0.10
		15			0.25	0.20	0.18	0.15
	50ㄴ100	20	40 $~ 65$					
	100*200				0.30	0.25	0.20	0.18

