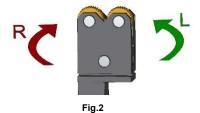


1 MOLETEADOS ADMISIBLES

TIPO DE	TIPO DE MOLETA		AVANCE (Fig.3)		
MOLETEADO	EJE 1	EJE 2	F Ì	R	
RAA	AA	AA	✓	✓	
RGE 30°	BL 30°	BR 30°	✓	✓	
RGE 45°	BL 45°	BR 45°	✓	✓	


La herramienta de moleteado por deformación tipo M9 está diseñada para realizar moleteados en piezas con diámetros cuyos valores varían en función de la moleta a emplear:

- M9 para moletas Ø10, diámetros comprendidos entre 3 y 50 mm.
- M9 para moletas Ø15, diámetros comprendidos entre 5 y 100 mm.

(2) MONTAJE DE LA VERSIÓN IZDA. O DCHA. DE LA HERRAMIENTA

La herramienta M9 está diseñada para trabajar tanto a derechas como a izquierdas dependiendo de la posición de montaje de la cabeza. Para intercambiar las versiones solo hay que aflojar el esparrago C.02 que bloquea el pasador C.04. Retirar el pasador C.04 y girar la cabeza 180°.

Posteriormente colocar de nuevo el pasador C.04 y bloquear con el esparrago C.02.

(3) MOLETEADOS EN PIEZAS ESCALONADAS

Siempre que se trabaje sobre piezas escalonadas, deberemos respetar una distancia de seguridad mínima, para el caso propio de la herramienta M9 debe ser de 3,5 mm desde el final del moleteado a la pared.

(4) COMIENZO DEL MOLETEADO

Desplazar la herramienta hasta posicionar la moleta en la esquina de la pieza únicamente 1/3 del ancho de la moleta sobre la pieza y 2/3 al aire. Presionar la moleta contra la pieza sin interrupción, con un avance radial (R) según las condiciones recomendadas en la tabla 1 para posteriormente avanzar longitudinalmente (F) con los valores indicados en la tabla 1

A la hora de calcular hasta que diámetro hay que profundizar con la moleta, hay que tener en cuenta la altura del diente (en el caso de moleta estándar es siempre igual a la mitad del paso) y el incremento de diámetro que sufre el material.

Fig.3

(5) PRECAUCIONES ANTES Y DURANTE EL CICLO DE TRABAJO

Cerciorarse de que el eje de la moleta esté firmemente sujeto. Comprobar que la moleta gire libremente sobre su eje y aplicar grasa grafitada para una mejor rodadura.

Trabajar siempre con abundante flujo a presión de refrigerante, taladrina o aceite de corte.

Verificar que el eje de la herramienta está alineado con el eje de la pieza.

(6) SOLUCIÓN DE PROBLEMAS

PROBLEMA	CAUSA	SOLUCIÓN			
Moleteado doble	Escaso avance radial al comenzar el moleteado en la esquina de la pieza	Aumentar el avance radial al comienzo del moleteado			
	El perímetro de la pieza no es un múltiplo entero del paso	Tornear las piezas a un diámetro que proporcione un perímetro múltiplo entero del paso			
Fácil rotura de las moletas	Excesiva profundidad de moleteado	Ajustar la profundidad de moleteado a los valores correctos			
Excesivo desgaste de las moletas	Excesiva profundidad de moleteado	Ajustar la profundidad de moleteado a los valores correctos			
	Las condiciones de trabajo no son las adecuadas	Revisar la velocidad de corte y el avance axial			

^{*}A veces no es posible aumentar el avance radial o, simplemente, no se puede trabajar radialmente sobre la pieza si ésta es muy pequeña o su amarre no es muy estable.

(7) VELOCIDADES DE CORTE Y AJUSTES RECOMENDADOS

MATERIAL	ØPIEZA (mm)	ØMOLETA (mm)	Vc (m/min)	AVANCE RADIAL (mm/rev)	AVANCE AXIAL (mm/rev) PASO (mm)			
					0.3÷0.6	0.6÷1.2	1.2÷1.6	1.6÷2.0
Acero 600 N/mm ²	<10	10	20÷50	0.05÷0.10	0.15	0.10	0.08	0.07
Acero 600 N/IIIII-	10÷50	15	25÷55		0.20	0.15	0.13	0.10
Acero 900 N/mm ²	<10	10	15÷40	0.04÷0.08	0.12	0.08	0.05	0.04
Acero 900 N/mm	10÷50	15	20÷45		0.15	0.10	0.08	0.06
A sore in svideble	<10	10	15÷40	0.04÷0.08	0.12	0.08	0.05	0.04
Acero inoxidable	10÷50	15	20÷45		0.15	0.10	0.08	0.06
Acero fundido	<10	10	20÷40	0.05÷0.10	0.15	0.10	0.08	0.07
	10÷50	15	25÷45		0.20	0.15	0.13	0.10
A1	<10	10	25÷45	0.05÷0.10	0.12	0.08	0.05	0.04
Aluminio	10÷50	15	30÷50		0.20	0.15	0.10	0.06
Latón —	<10	10	30÷50	0.05÷0.10	0.20	0.15	0.12	0.10
	10÷50	15	35÷55		0.25	0.20	0.18	0.15